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ABSTRACT

Spaceflight and planetary exploration place severe constraints on
the available bandwidth for downlinking large hyperspectral images.
In addition, communications with spacecraft often occur intermit-
tently, so mission-relevant hyperspectral data must wait for analy-
sis on the ground before it can inform spacecraft activity planning.
Onboard endmember detection can help alleviate these problems.
It enables novelty detection and target identification for scheduling
followup activities such as additional observation by narrow field
of view instruments. Additionally, endmember analysis can facil-
itate data summary for downlink. This work describes a planned
experiment of selective downlink by the EO-1 autonomous space-
craft. Here an efficient superpixel endmember detection algorithm
keeps to the limited computational constraints of the flight processor.
Tests suggest the procedure could enable significant improvements
in downlink efficiency.

Index Terms— Hyperspectral Unmixing Applications, End-
member Detection, Spaceflight

1. INTRODUCTION

The Earth Observing One (EO-1) spacecraft was launched in
November 2000 to a 700 kilometer altitude Earth orbit. EO-1
hosts the Hyperion Hyperspectral instrument, capable of resolving
the Earth’s surface to 30 meter resolution simultaneously in 220
distinct spectral bands ranging from 0.38 to 2.5 μm (near ultravi-
olet to short-wave infrared) [1]. The first hyperspectral sensor to
operate from space, it captures image swaths measuring 7.5 kilome-
ters (across orbital track) by approximately 100 kilometers (along
orbital track). Hyperion imagery has been used in a wide range of
applications including mineralogy, geology, forestry, agriculture,
and environmental management through the classification of surface
type and features. As of 2010, Hyperion has produced over 30,000
hyperspectral images.

In 2004, EO-1 began flying breakthrough autonomy software as
its primary method of operations. This flight and ground software,
called the Autonomous Sciencecraft [2] enables onboard processing
of Hyperion instrument data to detect science events and features
such as volcanism [3], cryospheric change [4], flooding [5], and sul-
fur springs [6, 7]. Detection of these phenomena onboard enables
the spacecraft to respond autonomously via a range of options such
as: (1) sending an alert; (2) downlinking science products or sub-
images; and/or (3) acquiring further imagery on a later overflight.
These options are invaluable for spacecraft with a constrained com-
munications budget that can only downlink a small fraction of their
hyperspectral data. Autonomous detection enables the EO-1 space-
craft to prioritize key products for transmission, delivering data in
a more timely fashion to ground teams. Higher-level derived prod-
ucts such as summary maps of thermal activity or ice coverage can

reduce data volumes by orders of magnitude. Future missions such
as HyspIRI will suffer even greater bandwidth constraints due to the
larger volume of collected data; the EO-1 mission can validate these
onboard analysis techniques for use in the future [8].

Current EO-1 data analysis classifies individual pixels into dis-
crete types such as snow, water, ice, land, and clouds. Developing
specific pixel-wise classifiers becomes evermore labor intensive as
the variety and number of classes increases. Computational consid-
erations also preclude many statistical analyses of the entire image
dataset such as a general endmember search. We have developed a
method to identify a large number of classes and enable scene-wide,
onboard statistical analysis by decreasing the number of spectra used
to describe each image. The two-stage procedure involves an initial
segmentation of the dataset to several thousand superpixels, and a
second endmember detection step that further reduces the spectra to
a small fixed number of endmembers. The endmember list is intrin-
sically valuable as a downlink data product but also serves as a com-
pressed representation of the scene diversity for applying more so-
phisticated and complex classification strategies. In the subsequent
sections we describe this strategy in detail, discuss its adaptation
to the EO-1 flight computer, and present initial results from a case
study of Hyperion imagery of the mineralogically well-understood
Cuprite, NV area. In the coming months, we expect the method pre-
sented here will be operational onboard EO-1.

2. SEGMENTATION AND ENDMEMBER DETECTION
STRATEGY

This work utilizes the superpixel segmentation strategy of Thomp-
son et al. [9, 10, 11], which fragments the image into small contigu-
ous regions of constant spectral properties and then uses the mean
spectrum of each segment in subsequent analysis. The superpixel
regions range from approximately 10 to over 100 image pixels in
size, and represent small physical features on the surface. This new
representation has several benefits for onboard processing. First, it
can potentially reveal subtle spectral signatures at or below the level
of instrument noise, as long as those spectral features are present
in multiple contiguous pixels. Additionally, it reduces the number
of spectra for later processing by one or more orders of magnitude.
This makes endmember detection in an entire image feasible for the
EO-1 onboard processor.

We favor the Felzenszwalb graph segmentation approach [12] to
generate superpixels. In brief, an agglomerative clustering method
represents the image as an 8-connected network with edges weighted
according to the spectral distance between neighboring pixels. A
generic measure of spectral distance can be used [9], while a task-
specific distance metric learned from training data can potentially
improve segmentation quality [11]. The segmentation begins with
each pixel as a separate cluster. It iteratively joins neighboring seg-
ments whenever a merger criterion is satisfied. Specifically, the



largest segment weight of the minimum tree spanning the two clus-
ters cannot be significantly larger than the maximum segment of
either component’s individual spanning tree. This results in some
small pure regions that are never merged; a final clean up pass reme-
dies this by merging all remaining small clusters below a minimum
size threshold.

After the initial segmentation, we employ the Sequential Maxi-
mum Angle Convex Cone (SMACC) strategy for endmember detec-
tion [13]. SMACC is an efficient algorithm similar to Gram Schmidt
Orthogonalization. It chooses endmember spectra in sequence that
greedily maximizes the angular projection onto an ever-growing
convex cone of endmembers. In principle, any endmember detec-
tion strategy would suffice but SMACC has several advantages for
our application. First, it is deterministic so that its results are easily
reproducible. Second, it is a sequential method that can return vari-
able numbers of endmembers in rank-ordered priority. This permits
the designer to vary the size of the resulting summary data product
that is returned by the spacecraft based on the expected complexity
of the scene and the downlink budget. One primary disadvantage
of SMACC is its susceptibility to noise. However, we find that the
superpixel segmentation helps mitigate this and in this application
the algorithm offers solid performance relative to competitors like
NFINDR [14].

3. FLIGHT ADAPTATION

While the implementation of both Felzsenzwalb graph segmentation
and SMACC endmember detection algorithms are straightforward,
care was required to fit within the limited memory and processing
constraints of the EO-1 onboard compute environment. The flight
computer is equipped with a Mongoose-V 32-bit microprocessor
clocked at 12 MHz. Due to a lack of floating-point hardware, all cal-
culations involving floating-point (decimal) numbers must be imple-
mented purely in software. Also, the processor cannot be completely
dedicated to onboard data analysis and autonomy tasks, but instead
must be shared with the spacecraft control and flight software. On-
board memory capacity constrains both specific data analysis tasks
and the amount of Hyperion data that may be processed.

A maximum of 16 MB of spare memory is available to onboard
data analysis applications. Further, onboard software is limited to
both a spectral and spatial subset of the entire scene. Downlinked
and post-processed Hyperion data products contain a rich set of 220
distinct spectral bands at full 256x4096 pixel spatial resolution. By
contrast, onboard data analysis is limited to a subset of 12 bands
and only a 256x1024 pixel spatial subportion of the complete im-
age. With such a limited amount of spectral data, band selection is
critically important. The bands used for endmember detection will
be selected by remote commands based on the observation goals;
key considerations are their ability to discriminate features of inter-
est and their susceptibility to noise. A wide range of automated band
selection strategies exist in literature [15, 16], and a full treatment of
this topic is outside this paper’s scope.

Felzenzwalb segmentation leverages a disjoint-set graph repre-
sentation with path compression whenever a node is accessed. This
amortizes the cost of parent node searches and makes common seg-
ment joins operations highly efficient. With this optimization in
place, the dominant computation and storage cost for segmentation
is in the initial graph construction. The distance between each pixel
and its eight neighbors must be computed and stored. We imple-
ment several common distance metrics for use onboard, but for each
one we eliminate inessential floating-point operations. For instance,
when computing Euclidean distance, the final square root computa-

tion is omitted; for spectral angle distance, only the dot product pro-
jection is computed, the inverse cosine is dropped. Such optimiza-
tions are justified in that the relative distance between pixels does not
change. For a 256x1024x12 band image, calculating edge weights
requires roughly 36 million floating-point operations. The total stor-
age requirements for both disjoint-set nodes and corresponding edge
weights is approximately 15 MB.

Compared to graph segmentation, SMACC endmember de-
tection imposes a relatively small computation and storage load.
During each SMACC iteration, the scene spectral residuals are
projected onto each new endmember direction, subject to numeri-
cal constraints that preserve physical interpretability. The spectral
residuals are updated to hold the new ”remainder.” This dot product
projection dominates the computational budget of SMACC end-
member detection. However, since superpixel segmentation has
already reduced thousands of individual multispectral pixels to hun-
dreds, by keeping the number of endmembers identified in the tens,
the total number of dot product projection operations is limited to a
few thousand. Similarly, storage is only required for each 12-band
mean multispectral superpixel, plus some additional space to track
endmember contribution and projection residuals. For onboard Hy-
perion data processing, SMACC, after segmentation, requires 500
KB or less of total storage.

Finally two areas that are often initially overlooked when adapt-
ing new algorithms and software technologies to flight code are qual-
ity assurance and integration and test. Integration and test (I&T)
brings together separately finalized and validated hardware and soft-
ware components to verify both inter-component interfaces and end-
to-end system operation. While we have not yet started the formal
I&T effort, we have taken a number of steps to ensure delivery of a
high quality and easily verifiable product. Our flight code is written
in C, based on, but not strictly ported from, both IDL and MAT-
LAB prototypes. The code is backed by nearly 100 automated unit
tests which provide complete code coverage. A smaller set of auto-
mated regression tests verify end-to-end system functionality. Unit
and regression tests taken together provide an easy way to verify
correctness during flight integration and, should later code changes
be required, our test suite will quickly expose unanticipated ripple
effects. Our flight code complies with the JPL Coding Standard for
C, has undergone regular Coverity Prevent (TM) static analysis and
formal code peer reviews are currently in-progress.

4. CASE STUDY: CUPRITE, NV

To verify our endmember detection method, we requested a Hype-
rion image acquisition of the well-studied Cuprite, NV area. Our
request was fulfilled on February 6, 2011 (day-of-year 37) and was
downlinked a few days later. Recall that a full Hyperion image swath
is 256x4096 pixels by 240 spectral bands, but onboard processing is
limited to a 256x1024 by 12-band pixel region. To match onboard
conditions, we restricted endmember detection to a 256x1024 spa-
tial subset of the full scene (scan lines 1925–2948). We also re-
stricted analysis to 12 hand-selected spectral bands covering the 2.1
to 2.4 μm wavelength range. Cuprite is an acid-sulfate hydrothermal
system exhibiting well-exposed kaolinite, alunite, silica, and some
calcite [17]. All four minerals have a sufficiently rich set of absorp-
tion features in the 2.1–2.4 μm range to be detected and also dis-
tinguished from one another. Conveniently, this wavelength range
avoids noise from atmospheric water absorption. While we strove to
select an equal spacing of bands covering the major absorption fea-
tures, we omitted particularly noisy channels, as assessed by visual
inspection. Simple, light striping artifacts were not sufficient for a



band to be removed from consideration. The 12 bands we chose are
shown in Figure 2. Hyperion band performance trade studies are an
area of future work.

Onboard data is represented as a digital number (DN) (raw sen-
sor) value. We started with this representation and applied the EO-
1 Hyperion onboard algorithm to convert DN values first to radi-
ance and then to reflectance. Briefly, onboard conversion assumes
a standard bidirectional reflectance model on Lambertian (diffuse)
surfaces, the same method used by GOES-8 [18]. We applied both
superpixel segmentation using a spectral angle distance measure and
SMACC endmember detection as already described. Intermediate
superpixel segments are depicted in Figure 1 (right). SMACC fil-
tered segments, i.e. those superpixel regions which correspond to
likely pure endmembers, are shown in Figure 1 (bottom). For this
scene, superpixel segmentation reduced 262144 individual multi-
spectral pixels to 3478 intermediate superpixel segments, a 75-fold
data reduction. SMACC endmember determination offered a further
100-fold data reduction.

Of the 30 superpixel endmember regions, over half, and by far
the largest regions, correspond to exposed mineralogy of the Cuprite
mine area in the south (right half of the scene in Figure 1). Several
of these regions align nicely with those highlighted in both Kruse et
al. [17] and Thompson et al. [9]. By contrast, superpixel detections
in the northern mountainous region are much smaller in total area.
This is consistent with exposed mineralogy being easily detectable
from both aerial and orbital spectral imagery. In both northern and
southern areas, we are continuing to assess which regions cover pure
endmembers.

5. DISCUSSION

Spacecraft platforms presents unique challenges in the form of con-
strained communications, computation, and high instrument noise.
We address these problems with data reduction strategies such as
superpixel segmentation and band selection. Together, these mea-
sures make classical endmember detection algorithms feasible for
use onboard the EO-1 autonomous sciencecraft. The Cuprite exper-
iments demonstrate recovery of the basic mineralogical diversity in
the Cuprite scene, suggesting that endmember detection is a good
candidate algorithm for onboard data analysis. The Cuprite scene
is uniquely well-studied, with a wide variety of minerals and many
challenging compact deposits. The test scene was well-illuminated
and mostly cloudless, so it provides a natural upper bound on ex-
pected performance of the system. Further study on the ground and
in flight will explore performance for a wider range of targets and
imaging conditions. We will also consider alternative application
domains involving agriculture, land use, and ocean science.

A future generation of hyperspectral imagers such as HyspIRI
will return unprecidented volumes of image data; communications
bandwidth constraints and latency will be a key constraint on the
total data yield. A similar issue confronts planetary exploration mis-
sions that must communicate with Earth over the Deep Space Net-
work. Endmember detection can improve mission science return in
both cases. It permits more sophisticated analyses such as novelty
detection, change detection against historical catalogs, scene sum-
mary, and data reduction prior to onboard classification to find spe-
cific targets of interest.
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Fig. 1. (Top) Hyperion image of Cuprite, NV 256x1024 pixels (rotated) at 30 m/pixel (R: 640.50 nm, G: 548.92 nm, B: 457.34 nm).
(Right) Detail region with and without intermediate superpixel segment boundaries superimposed. The entire scene was segmented into
3478 superpixel regions, a 75-fold reduction in data size compared to the original image. (Bottom) The top 30 SMACC filtered endmember
segments, overlaid on Hyperion band 196 (2113.04 nm); some regions in the Cuprite mine area (right half of scene) correspond to endmember
regions highlighted in both Kruse et al. [17] and Thompson et al. [9]. Further investigation is underway to identify which regions correspond
to pure endmembers.
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Fig. 2. Top four mean superpixel endmember spectra. For clarity all 30 Hyperion bands in the wavelength range 2.1–2.4 μm are shown.
Spectra were ratioed using a flat spectral superpixel region. Dashed vertical lines denote the 12 bands used for superpixel segmentation and
SMACC endmember determination.
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